Eigenvalues of the normalized Laplacian
نویسنده
چکیده
A graph can be associated with a matrix in several ways. For instance, by associating the vertices of the graph to the rows/columns and then using 1 to indicate an edge and 0 otherwise we get the adjacency matrix A. The combinatorial Laplacian matrix is defined by L = D − A where D is a diagonal matrix with diagonal entries the degrees and A is again the adjacency matrix. Both of these matrices have been well studied for graphs. A newer matrix is the normalized Laplacian L = D−1/2LD−1/2 which can be thought of as a cross in between these two other matrices and is related to the transition matrix for random walks. If we have the matrix then we completely understand the graph since it represents the graph. But sometimes it might be too much to hope to have the matrix as it requires a large amount of memory to store the matrix (i.e., a graph on n vertices can require something on the order of n to store the matrix, for a graph with billions of nodes, such as the internet this becomes prohibitive). As an alternative we might study the eigenvalues of the matrix. These eigenvalues give us some useful information about the matrix which can be translated into useful information about the graph. The area of spectral graph theory ties together the eigenvalues of the matrix with the structure of a graph. The eigenvalues of the adjacency and combinatorial Laplacian have been well studied. On the other hand the eigenvalues of the normalized Laplacian have only recently been studied, most importantly in the work of Fan Chung [23].
منابع مشابه
Normalized laplacian spectrum of two new types of join graphs
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
متن کاملSome remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs
Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...
متن کاملSeidel Signless Laplacian Energy of Graphs
Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...
متن کاملLimit points for normalized Laplacian eigenvalues
Limit points for the positive eigenvalues of the normalized Laplacian matrix of a graph are considered. Specifically, it is shown that the set of limit points for the j-th smallest such eigenvalues is equal to [0, 1], while the set of limit points for the j-th largest such eigenvalues is equal to [1, 2]. Limit points for certain functions of the eigenvalues, motivated by considerations for rand...
متن کاملInterlacing for weighted graphs using the normalized Laplacian
The problem of relating the eigenvalues of the normalized Laplacian for a weighted graph G and G − H, for H a subgraph of G is considered. It is shown that these eigenvalues interlace and that the tightness of the interlacing is dependent on the number of nonisolated vertices of H. Weak coverings of a weighted graph are also defined and interlacing results for the normalized Laplacian for such ...
متن کاملAlgebraic aspects of the normalized Laplacian
Spectral graph theory looks at the interplay between the structure of a graph and the eigenvalues of a matrix associated with the graph. Many interesting graphs have rich structure which can help in determining the eigenvalues associated with some particular matrix of a graph. This survey looks at some common techniques in working with and determining the eigenvalues associated with the normali...
متن کامل